Holtec Gas Systems manufactures nitrogen generators based on both Pressure-Swing Adsorption and Membrane separation technologies. But which technology is right for you? While cost is a significant driver of this decision, there are many other factors which you should consider before choosing the best technology for your application.

Pressure-Swing Adsorption (PSA) - Process Description

PSA technology works on the concept of adsorption - the process by which molecules temporarily adhere to the surface of materials they are in contact with. A PSA nitrogen generator consists of two or more adsorbers filled with separation material called carbon-molecular sieve (CMS). CMS is produced specifically to have pore sizes that correspond to the relatively small size of an oxygen molecule (compared to the relatively larger nitrogen molecule).

In a PSA nitrogen generator, compressed air is drawn from the atmosphere and directed into one adsorber. Under pressure, oxygen in the compressed air gets "stuck" in the pores of the CMS, allowing the remaining constituents (mostly nitrogen) to pass through the system unhindered.

Sounds simple, doesn’t it? There is only one problem. Eventually, oxygen molecules separation will no longer occur. This is called saturation, when oxygen molecules completely cover the surface of the CMS and there is no room for more to be adsorbed.

Fortunately, the adsorption process is reversed by depressurizing the adsorber. This is why PSA technology uses two or more adsorbers. At ambient pressure, oxygen is released from the surface of the CMS and is returned to the atmosphere as waste gas, thus regenerating the adsorber for use in the next cycle. While the first adsorber is regenerating, the second adsorber is actively producing nitrogen. At the end of the cycle, the first adsorber is once again ready to produce nitrogen and the second adsorber regenerates - and so on.

However, each time an adsorber cycles back on-line, there is a brief period during pressurization that no nitrogen is being produced. This is one reason why every PSA nitrogen generator requires a process nitrogen receiver tank.

Additionally, compressed air usage during the pressurization step is greater than the average flow. In order to ensure there is always enough clean, dry, oil-free compressed air to supply the system, a process air receiver is also usually needed.

PSA Process Steps:

Purification
1. Pressurized air in
2. Adsorption of oxygen
3. High purity nitrogen out

Regeneration
4. Equalization of pressure (not depicted)
5. Regenerating bed depressurizes completely, allowing oxygen enriched gas to desorb
6. Waste gas exits through silencer
Membrane Separation - Process Description

Membrane nitrogen generators separate nitrogen from atmosphere by passing compressed air through a permeable membrane. The process relies on the principle of selective gas permeation. Each gas has a different permeation rate, so as the compressed feed air stream passes across the membrane, gases with faster permeation rates like O₂ and CO₂ are released back into the atmosphere as waste gas (along with some N₂).

The product nitrogen, now stripped of most of the oxygen and carbon dioxide, passes out the other end of the separator at a slightly lower pressure for collection or directly into your application. Unlike a PSA system, a nitrogen receiver tank is not necessarily needed.
Typical Membrane Process Flow

1. Compressor - Compressed air is required with all Membrane nitrogen generators. If your site has compressed air available, typically between this air can be used to feed a membrane system. Depending on what type of compressor and air treatment already in place, the diagram above may change. Membrane productivity and efficiency is significantly improved by higher pressures, and they are typically operated between 100-350 psig (6.9-24.1 barg).

2. Liquid separator - Used to remove bulk water and oil from the compressed air.

3. Dryer - Depending on the application, existing equipment, and the type of membrane selected, a dryer may or may not be required.

4. 0.01 Micron coalescing filter - Used to reduce oil aerosols to less than 0.0008 ppm.

5. Activated Carbon Bed - Even after a high quality coalescing filter, there will still be oil vapor in the compressed air whenever a lubricated compressor is used. Holtec therefore always recommends the use of a large bed of activated carbon pellets in order to adsorb any remaining hydrocarbons, making the compressed air virtually oil-free. Cartridge style activated carbon filters are too small, meaning residence time will not be long enough to adsorb all oil and therefore this style of filter is not recommended. They can, however, be utilized when oil-free compressors are used in order to eliminate other contaminants.

6. Dust Filter - Dust from activated carbon would collect in the membrane separator and reduce performance, so we include a filter to remove.

7. Process Air Receiver - Depending on the application and existing equipment, an air receiver may be necessary. The best location in process flow may change depending on the application.

8. Membrane Nitrogen Generator - We hope you will choose a high quality, reliable, Holtec membrane nitrogen generator for this piece of equipment!

9. Process Nitrogen Receiver - Unlike a PSA system, membrane nitrogen production is a steady state process where nitrogen is being produced all the time at a stable rate. A nitrogen receiver is therefore not a necessity, but one can be included when the customer wants to have stored nitrogen as well.

PSA vs. Membrane Application Selection

Where cost and efficiency are the prime factors, PSA systems are almost universally the technology of choice. Even when these two decision drivers do not apply, at purities above 99.9%, PSA is the only choice for a gaseous nitrogen generator.

As illustrated in the graph to the right, where capacity or purity requirements are moderate, membrane systems may be an attractive technology when considering both initial investment and cost of operation. Small membrane systems involve fewer parts and assembly and therefore may be less costly to purchase.

However, membrane media is more costly than the CMS used in a PSA. Additionally, as purity increases, the compressed air requirement will rise faster for a membrane system than it will for a PSA. Therefore, as capacity and purity increase, PSA technology overtakes as the most cost effective option.

However, in applications where simplicity is more important than cost, membrane systems may be chosen even for larger nitrogen demands or higher purity. For example, in very remote locations where it is difficult for service personnel to reach (such as an oil platform), membrane systems are often chosen even thought they are more costly to operate.
Knowledge Brief

Example Systems

- **Above:** Large standard two bed PSA
- **Above-right:** High spec four bed PSA
- **Right:** Small standard PSA with tanks mounted on skid.

- **Above:** Containerized membrane system
- **Right:** Small membrane system in stainless steel cabinet

Point by Point Feature Comparison

<table>
<thead>
<tr>
<th>Topic</th>
<th>Membrane</th>
<th>Pressure-Swing Adsorption (PSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity Range</td>
<td>Effective at purities up to 99.9% (Max 0.1% O₂ content).</td>
<td>Effective at purities up to 99.995% (Max 5 ppm O₂).</td>
</tr>
<tr>
<td>Capacity vs. Purity</td>
<td>Capacity reduced significantly as purity requirement increases.</td>
<td>Capacity reduced gradually as purity requirement increases.</td>
</tr>
<tr>
<td>Feed Air/Operating Cost</td>
<td>Nearly equal in efficiency to PSA technology at purities near 95%. However, efficiency reduced significantly at higher purities.</td>
<td>Significantly more efficient than membrane technology when nitrogen purity exceeds 95%. As purity increases, the difference in efficiency becomes more significant.</td>
</tr>
<tr>
<td>Water Sensitivity</td>
<td>Water liquid or vapor will not damage a membrane separator, but capacity will be temporarily reduced if liquid water enters. Once the membrane dries, capacity is restored.</td>
<td>PSA Systems require dry air, typically < 38°F (3°C) dew point. Carbon Molecular Sieve (CMS) is sensitive to higher moisture concentrations and capacity will decrease if exposed. Permanently damage may occur.</td>
</tr>
<tr>
<td>Oil Sensitivity</td>
<td>Contamination with oil will cause permanent and irreversible decline in performance.</td>
<td>Contamination with oil will cause permanent and irreversible decline in performance.</td>
</tr>
<tr>
<td>Usable life</td>
<td>The membrane film gets denser over time, a process called aging. Capacity is reduced most during the first 1-2 years of life. Reasonable performance should continue even after 10+ years if filtration is inspected, maintained, and replaced per manufacturer specification.</td>
<td>CMS performance does not decline with time, only with contamination. It is therefore possible to retain full performance even after 10+ years, if proper “clean air” recommendations are followed.</td>
</tr>
<tr>
<td>Moving Parts</td>
<td>Feed isolation valve opens and closes to start and stop the nitrogen generator. This can be done manually, as needed, or it can be automated to start and stop on demand.</td>
<td>Typically eight automated On/Off valves are used to direct compressed air flow into the online or regenerating adsorber, to release product nitrogen, to equalize pressure, and allow waste to exit through a silencer. The PSA will start and stop automatically on demand.</td>
</tr>
</tbody>
</table>